kramann.info
© Guido Kramann

Login: Passwort:










Mikrocontroller
1 Einfuehrung
..1.1 Entwicklungsgeschichtliches
..1.2 Maschinensprache
..1.3 Assemblerbeispiel
..1.4 Sprachwahl
..1.5 Praxis
....1.5.1 Digital_IO
....1.5.2 Byteoperationen
....1.5.3 AVR_Studio
....1.5.4 Testboard
....1.5.5 Aufgaben
....1.5.6 Do_it_yourself
......1.5.6.1 Ampel
......1.5.6.2 Programmierer
..1.6 Literatur
..1.7 Programmierer
....1.7.1 Bauverlauf
....1.7.2 KurzreferenzLow
....1.7.2 Kurzreferenz_16PU
..1.8 Uebung1
..1.9 BoardAtHome
....1.9.1 Software
....1.9.2 Hardware
....1.9.3 Knoppix
....1.9.4 Aufbau
....1.9.5 LED
2 Oszillator
..2.1 Assembler
..2.2 Interner_RC
..2.3 Quarz
..2.4 Taktgenerator
3 DigitalIO
..3.1 Elektrische_Eigenschaften
..3.2 Pullup_Widerstaende
..3.3 Bitmasken_Eingang
..3.4 Bitmasken_Ausgang
..3.5 Tic_Tac_Toe
....3.5.1 DuoLEDs
....3.5.2 Schaltplan
....3.5.3 Spielfeld
....3.5.4 Anwahl
....3.5.5 Kontrolle
..3.6 Laboruebung2
..3.7 Zaehler
4 PWM
..4.1 Prinzip
..4.2 Nutzen
..4.3 Generierung
..4.4 Programmierung
..4.5 Servos
..4.7 Laboruebung3
..4.8 LoesungUE3
..4.9 Uebung6
5 LichtKlangKugeln
..5.1 LED
..5.2 RGB
..5.3 Sensoren
..5.4 lautsprecher
..5.5 tonerzeugung
6 UART
..6.1 Bussysteme
..6.2 UART
..6.3 RS232
..6.4 Hardware
..6.5 Senden
..6.6 Hyperterminal
..6.7 Empfangen
..6.8 Broadcast
..6.9 Uebung4
7 Infrarot
..7.1 schalten
..7.2 seriell
..7.3 Uebung
..7.4 Cloud
8 OOP
..8.1 Ansatz
..8.2 Uebung
..8.3 Statisch
..8.4 Datentypen
..8.5 RS232
....8.5.1 Prozedural
....8.5.2 Analyse
....8.5.3 Umsetzung
....8.5.4 Vererbung
....8.5.5 Statisch
....8.5.6 Performance
..8.6 Fahrzeug
9 ADW
..9.1 ADW
..9.2 Zufallsgenerator
..9.3 Sensoren
..9.4 Musterloesung
10 Cloud
11 SPI
..11.1 Testanordnung
..11.2 Register
..11.3 Test1
..11.4 Test2_Interrupt
..11.5 Test3_2Slaves
..11.6 Laboruebung
12 EEPROM
13 I2C
..13.1 MasterSendByte
..13.2 MasterSend2Bytes
..13.3 MasterReceiveByte
..13.4 MasterReceive2Bytes
14 Anwendungen
..14.1 Mechatroniklabor
....14.1.1 Biegelinie
....14.1.2 Ausbruchsicherung
....14.1.3 Einachser
....14.1.4 AV
....14.1.5 Vierradlenkung
....14.1.6 Kommunikation
..14.2 Sinuserzeugung
....14.2.1 Variante1
....14.2.2 Variante2
....14.2.3 Variante3
....14.2.4 Variante4
..14.3 Laboruebung8
..14.4 Loesung_Ue8
..14.5 SPI_Nachtrag
20 Xubuntu

4.1 Prinzip - Was ist ein PWM-Signal?

  • Neben der Möglichkeit Sensorsignale über den A/D-Wandler oder den Komparator auszuwerten, gibt es bei dem ATmega32 als integrierte Peripherie auch eine zur Ansteuerung von Aktuatoren:
  • Die drei integrierten Timer sind in der Lage so genannte Pulsweiten modulierter Signale, kurz PWM-Signale zu erzeugen.
  • PWM-Signale sind Rechteckschwingungen einer festen Frequenz.
  • Dasjenige, was in dem von uns betrachteten Fall schwingt, ist die elektrische Spannung.
  • D.h. die Dauer einer Periode bestehend aus einer High-Phase und einer Low-Phase ist konstant.
  • Jedoch kann variiert werden, in welchem Maße die High-Phase verbreitert wird. In gleichem Maße muß dann die Low-Phase schmaler werden.
  • Im Extremfall kann die High-Phase über die gesamte Periodendauer gehen, oder im anderen Extremfall die Lowphase.
  • Folgendes Schaubild zeigt:
  • a) PWM-Signal, bei dem High- und Lowphase jeweils 50% der Periode ausmachen.
  • b) PWM-Signal, bei dem die Highphase 25% und die Lowphase 75% ausmacht.
  • c) PWM-Signal, bei dem die Highphase 75% und die Lowphase 25% ausmacht.
  • d) PWM-Signal, bei dem die Highphase 0% und die Lowphase 100% ausmacht.
  • e) PWM-Signal, bei dem die Highphase 100% und die Lowphase 0% ausmacht.
prinzip.png

Bild 4.1-1: Beipsiele für PWM-Signale