kramann.info
© Guido Kramann

Login: Passwort:










Regelungssysteme
1 day_by_day
2 Heizregelkreis
3 Verzoegerungsglieder
4 Laplace
..4.1 Eigenwerte
..4.2 PT1
..4.3 PRegler
..4.4 Scilab
5 Regleroptimierung
..5.1 Guetefunktion
..5.2 Heuristiken
..5.3 Scilab
..5.4 Gradientenverfahren
..5.5 ModifizierteG
..5.6 Gleichstrommotor
..5.7 Stoerverhalten
6 Javaanwendung
..6.1 PIDgeregelterAntrieb
..6.2 RungeKuttaIntegrator
..6.3 Gradientenverfahren
7 Einstellregeln
..7.1 Totzeit
..7.2 Methode1
..7.3 Methode2
..7.4 Scilab
..7.5 Daempfungsgrad
..7.6 Uebung
8 Polvorgabe
9 Beobachter
10 AutonomerHackenprosche
..10.1 Herleitung
..10.2 Scilab
..10.3 Modellerweiterung
..10.4 Scilab
..10.5 Modellgueltigkeit
..10.6 java
11 Stabilitaet
..11.1 Beispiele
..11.2 Nyqusitkriterium
..11.3 Windup
..11.4 Bode
12 Adaptiv
..12.1 Definition
..12.2 Einachser
..12.3 Auswertung
..12.4 Identifikation
..12.5 Regleroptimierung
..12.6 Zustandsregler
..12.7 Beobachter
13 Analyse
..13.1 Linear
..13.2 Nichtlinear
14 Kalmanfilter
15 Ue_04_2014
..15.1 Geschwindigkeit
..15.2 Richtung
..15.3 Gesamtsystem
..15.4 RiccatiUSW
..15.5 TdOT
16 Inverses_Pendel
17 Einachser
..17.1 Mechanik
..17.2 Uebung8
18 Fuzzy
..18.1 Fuzzylogik
..18.2 FuzzyRegler
..18.3 Uebung9
..18.5 Softwareentwicklung
....18.5.1 AgileSoftwareentwicklung
....18.5.2 FuzzyRegler
....18.5.3 Uebung
..18.6 Umsetzung
....18.6.1 FuzzyRegler
....18.6.2 Simulation
....18.6.3 Optimierung
....18.6.4 Uebung
..18.7 Haengependel
....18.7.1 Haengependel
....18.7.2 Simulation
....18.7.3 FuzzyRegler
....18.7.4 Optimierer
....18.7.5 Genetisch
..18.8 Information
..18.9 Energie
21 Beispiel1
98 day_by_day_WS2021_SoSe21
99 day_by_day_SoSe2018
kramann.info
© Guido Kramann

Login: Passwort:




Simulation des Hängependels

  • Als Test werden die Klassen Antrieb.java und TestAntrieb.java aus dem vorangegangenen Kapitel angepaßt:
package opti;
import java.awt.*;
public class Antrieb extends Simulationsmodell
{
    public Antrieb()
    {
        super(2); //Zwei Simulationsgleichungen
    }
    public double[] berechneRechteSeite(double[] yalt, double t)
    {
        double m = 1.0;
        double r = 0.5;
        double d = 0.05;
        double g = 9.81;
        double J = 0.25*m*(0.5*d)*(0.5*d)+(1.0/12.0)*m*(2.0*r)*(2.0*r);
        double FA = 0.0;
        f[0] = yalt[1];
        f[1] = - (( m*r*g )/(J+m*r*r))*Math.sin(yalt[0]) + ((2.0*r)/(J+m*r*r))*Math.cos(yalt[0])*FA;
        return f;
    } 
}

Code 0-1: Antrieb.java (Hängependel als Modell eingefügt)

package opti;
public class TestAntrieb
{
    public static void main(String[] args)
    {
        Antrieb antrieb = new Antrieb();
        RungeKuttaIntegrator rungekuttaintegrator = new RungeKuttaIntegrator();
        rungekuttaintegrator.add(antrieb);
        double dt = 0.005;
        double  t = 0.0;
        double[] y;
        double[] yalt = {0.25*Math.PI,0.0};
        for(int i=0;i<1000;i++)
        {
            System.out.println(t+" "+yalt[0]);
            y = rungekuttaintegrator.zeitschritt(yalt,t,dt);
            yalt[0] = y[0];
            yalt[1] = y[1];
            t+=dt;
        }
    }
}

Code 0-2: TestAntrieb.java (Simuliert testweise das Hängependel)

simhaenge.zip - Testweise Simulation des Hängependels.
Simulationsergebnis.

Bild 0-1: Simulationsergebnis.