kramann.info
© Guido Kramann

Login: Passwort:










Robuste Systemintegration
1 Grundlagen
..1.1 Newton
....1.1.1 LinearSchwinger
....1.1.2 Daempfung
....1.1.4 ODE
....1.1.5 Saaluebung
..1.2 NewtonEuler
....1.2.1 Traegheitsmomente
....1.2.2 Modellgleichungen
....1.2.3 Einfachpendel
..1.3 Scilab
....1.3.1 Erste_Schritte
....1.3.2 Skripte
....1.3.3 Funktionen
..1.4 Laplace
....1.4.1 Eigenwerte
....1.4.2 PT1
..1.5 Regleroptimierung
....1.5.1 Guetefunktion
....1.5.2 Heuristiken
....1.5.3 Scilab
..1.6 Einstellregeln
....1.6.1 Totzeit
....1.6.2 Methode1
....1.6.3 Methode2
....1.6.4 Scilab
..1.7 Zustandsregler
..1.8 Polvorgabe
..1.8 Polvorgabe_alt
..1.9 Beobachter
....1.9.1 Haengependel
..1.10 Daempfungsgrad
..1.11 Processing
....1.11.1 Installation
....1.11.2 Erste_Schritte
....1.11.3 Mechatronik
....1.11.4 Bibliotheken
....1.11.5 Uebung
....1.11.6 Snippets
......1.11.6.1 Dateioperationen
......1.11.6.2 Bilder
......1.11.6.3 GUI
......1.11.6.4 Text
......1.11.6.5 PDF
......1.11.6.8 Maus
......1.11.6.10 Zeit
......1.11.6.13 Animation
......1.11.6.15 Simulation
....1.11.7 Referenzen
..1.12 Breakout
2 Beispiel
3 Beispielloesung
4 Praxis
5 javasci
6 Fehlertoleranz1
7 Reglerentwurf
..7.1 Sprungantwort
..7.2 Messdaten
..7.3 Systemidentifikation
..7.4 Polvorgabe
..7.5 Beobachter
..7.6 Robuster_Entwurf
..7.7 SIL
8 Systementwicklung
9 Arduino
..9.1 Lauflicht
..9.2 Taster
..9.3 Sensor
..9.12 Motor_PWM1
..9.13 Motor_PWM2_seriell
..9.14 Motor_PWM3_analogWrite
..9.15 Scheduler
..9.20 AV
..9.21 Mikrofon
..9.22 Universal
....9.22.1 Laborplatine
....9.22.2 LED_Leiste
....9.22.3 Motortreiber
....9.22.4 Sensoreingaenge
....9.22.5 Taster
....9.22.6 Tests
....9.22.7 Mikrofon
....9.22.8 Lautsprecher
....9.22.9 Fahrgestell
..9.23 Zauberkiste
..9.24 OOP
....9.24.1 Uebungen
..9.25 AVneu
....9.25.1 Tests
..9.26 DA_Wandler
..9.27 CompBoard
....9.27.1 Tastenmatrix
....9.27.2 ASCIIDisplay
..9.28 CTC
..9.29 Tonerzeugung
10 EvoFuzzy
..10.1 Fuzzy
....10.1.1 Fuzzylogik
....10.1.2 FuzzyRegler
....10.1.3 Uebung9
....10.1.5 Softwareentwicklung
......10.1.5.1 AgileSoftwareentwicklung
......10.1.5.2 FuzzyRegler
......10.1.5.3 Uebung
....10.1.6 Umsetzung
......10.1.6.1 FuzzyRegler
......10.1.6.2 Simulation
......10.1.6.3 Optimierung
......10.1.6.4 Uebung
....10.1.7 Haengependel
......10.1.7.1 Haengependel
......10.1.7.2 Simulation
......10.1.7.3 FuzzyRegler
......10.1.7.4 Optimierer
......10.1.7.5 Genetisch
....10.1.8 Information
....10.1.9 Energie
..10.2 Optimierung
....10.2.1 Gradientenverfahren
....10.2.2 Heuristiken
....10.2.3 ModifizierteG
....10.2.4 optim
..10.3 Genalgorithmus
..10.4 NeuronaleNetze
....10.4.1 Neuron
....10.4.2 Backpropagation
....10.4.3 Umsetzung
....10.4.4 Winkelerkennung
..10.5 RiccatiRegler
11 Agentensysteme
12 Simulation
20 Massnahmen
21 Kalmanfilter
..21.1 Vorarbeit
..21.2 Minimalversion
..21.3 Beispiel
30 Dreirad
31 Gleiter
..31.1 Fehlertoleranz
80 Vorlesung_2014_10_01
81 Vorlesung_2014_10_08
82 Vorlesung_2014_10_15
83 Vorlesung_2014_10_22
84 Vorlesung_2014_10_29
kramann.info
© Guido Kramann

Login: Passwort:




Einfaches aber sinnvolles regelungstechnisches Beispiel zur Anwendung des Kalmanfilters

(EN google-translate)

(PL google-translate)

Ein Körperpendel soll in der Senkrechten gehalten werden. Dies soll mit Hilfe eines Motors am Pendelende geschehen. Der Einfachheit halber wird im Modell davon ausgegangen, dass als Stellgröße ein Antriebsmoment M zwischen zylindrischer Schwungmasse und Pendelarm genutzt werden kann: