kramann.info
© Guido Kramann

Login: Passwort:










Robuste Systemintegration
1 Grundlagen
..1.1 Newton
....1.1.1 LinearSchwinger
....1.1.2 Daempfung
....1.1.4 ODE
....1.1.5 Saaluebung
..1.2 NewtonEuler
....1.2.1 Traegheitsmomente
....1.2.2 Modellgleichungen
....1.2.3 Einfachpendel
..1.3 Scilab
....1.3.1 Erste_Schritte
....1.3.2 Skripte
....1.3.3 Funktionen
..1.4 Laplace
....1.4.1 Eigenwerte
....1.4.2 PT1
..1.5 Regleroptimierung
....1.5.1 Guetefunktion
....1.5.2 Heuristiken
....1.5.3 Scilab
..1.6 Einstellregeln
....1.6.1 Totzeit
....1.6.2 Methode1
....1.6.3 Methode2
....1.6.4 Scilab
..1.7 Zustandsregler
..1.8 Polvorgabe
..1.8 Polvorgabe_alt
..1.9 Beobachter
....1.9.1 Haengependel
..1.10 Daempfungsgrad
..1.11 Processing
....1.11.1 Installation
....1.11.2 Erste_Schritte
....1.11.3 Mechatronik
....1.11.4 Bibliotheken
....1.11.5 Uebung
....1.11.6 Snippets
......1.11.6.1 Dateioperationen
......1.11.6.2 Bilder
......1.11.6.3 GUI
......1.11.6.4 Text
......1.11.6.5 PDF
......1.11.6.8 Maus
......1.11.6.10 Zeit
......1.11.6.13 Animation
......1.11.6.15 Simulation
....1.11.7 Referenzen
..1.12 Breakout
2 Beispiel
3 Beispielloesung
4 Praxis
5 javasci
6 Fehlertoleranz1
7 Reglerentwurf
..7.1 Sprungantwort
..7.2 Messdaten
..7.3 Systemidentifikation
..7.4 Polvorgabe
..7.5 Beobachter
..7.6 Robuster_Entwurf
..7.7 SIL
8 Systementwicklung
9 Arduino
..9.1 Lauflicht
..9.2 Taster
..9.3 Sensor
..9.12 Motor_PWM1
..9.13 Motor_PWM2_seriell
..9.14 Motor_PWM3_analogWrite
..9.15 Scheduler
..9.20 AV
..9.21 Mikrofon
..9.22 Universal
....9.22.1 Laborplatine
....9.22.2 LED_Leiste
....9.22.3 Motortreiber
....9.22.4 Sensoreingaenge
....9.22.5 Taster
....9.22.6 Tests
....9.22.7 Mikrofon
....9.22.8 Lautsprecher
....9.22.9 Fahrgestell
..9.23 Zauberkiste
..9.24 OOP
....9.24.1 Uebungen
..9.25 AVneu
....9.25.1 Tests
..9.26 DA_Wandler
..9.27 CompBoard
....9.27.1 Tastenmatrix
....9.27.2 ASCIIDisplay
..9.28 CTC
..9.29 Tonerzeugung
10 EvoFuzzy
..10.1 Fuzzy
....10.1.1 Fuzzylogik
....10.1.2 FuzzyRegler
....10.1.3 Uebung9
....10.1.5 Softwareentwicklung
......10.1.5.1 AgileSoftwareentwicklung
......10.1.5.2 FuzzyRegler
......10.1.5.3 Uebung
....10.1.6 Umsetzung
......10.1.6.1 FuzzyRegler
......10.1.6.2 Simulation
......10.1.6.3 Optimierung
......10.1.6.4 Uebung
....10.1.7 Haengependel
......10.1.7.1 Haengependel
......10.1.7.2 Simulation
......10.1.7.3 FuzzyRegler
......10.1.7.4 Optimierer
......10.1.7.5 Genetisch
....10.1.8 Information
....10.1.9 Energie
..10.2 Optimierung
....10.2.1 Gradientenverfahren
....10.2.2 Heuristiken
....10.2.3 ModifizierteG
....10.2.4 optim
..10.3 Genalgorithmus
..10.4 NeuronaleNetze
....10.4.1 Neuron
....10.4.2 Backpropagation
....10.4.3 Umsetzung
....10.4.4 Winkelerkennung
..10.5 RiccatiRegler
11 Agentensysteme
12 Simulation
20 Massnahmen
21 Kalmanfilter
..21.1 Vorarbeit
..21.2 Minimalversion
..21.3 Beispiel
30 Dreirad
31 Gleiter
..31.1 Fehlertoleranz
80 Vorlesung_2014_10_01
81 Vorlesung_2014_10_08
82 Vorlesung_2014_10_15
83 Vorlesung_2014_10_22
84 Vorlesung_2014_10_29
kramann.info
© Guido Kramann

Login: Passwort:




Hauptträgheitsmomente von einfachen Körpern

  • Das Trägheitsmoment eines Körpers konstanter Dichte ρ bzgl. einer Rotationsachse ergibt sich aus:
Berechnung des Trägheitsmomentes bzgl. einer Rotationsachse

Bild 0-1: Berechnung des Trägheitsmomentes bzgl. einer Rotationsachse

  • Es werden also die Volumenelemente summiert und mit deren Abstand zur Rotationsachse im Quadrat gewichtet.
  • Es gibt immer zwei senkrecht zueinander stehende Rotations-Achsen bzgl. derer ein Körper jeweils das maximale und das minimale Trägheitsmoment hat.
  • Das sind die Hauptträgheitsachsen.
  • Die Rotation erfolgt dann stets um den Körper-Schwerpunkt.
  • Für einige einfache Körper sind die Hauptträgheitsmomente folgende:
Körper Achslage Hauptträgheitsmomente
Kugel Kugel Kugel Formel
Zyllinder Zyllinder Zyllinder Formel
Quader Quader Quader Formel

Tabelle 0-1: Hauptträgheitsmomente einiger einfacher homogener Körper