kramann.info
© Guido Kramann

Login: Passwort:










Robuste Systemintegration
1 Grundlagen
..1.1 Newton
....1.1.1 LinearSchwinger
....1.1.2 Daempfung
....1.1.4 ODE
....1.1.5 Saaluebung
..1.2 NewtonEuler
....1.2.1 Traegheitsmomente
....1.2.2 Modellgleichungen
....1.2.3 Einfachpendel
..1.3 Scilab
....1.3.1 Erste_Schritte
....1.3.2 Skripte
....1.3.3 Funktionen
..1.4 Laplace
....1.4.1 Eigenwerte
....1.4.2 PT1
..1.5 Regleroptimierung
....1.5.1 Guetefunktion
....1.5.2 Heuristiken
....1.5.3 Scilab
..1.6 Einstellregeln
....1.6.1 Totzeit
....1.6.2 Methode1
....1.6.3 Methode2
....1.6.4 Scilab
..1.7 Zustandsregler
..1.8 Polvorgabe
..1.8 Polvorgabe_alt
..1.9 Beobachter
....1.9.1 Haengependel
..1.10 Daempfungsgrad
..1.11 Processing
....1.11.1 Installation
....1.11.2 Erste_Schritte
....1.11.3 Mechatronik
....1.11.4 Bibliotheken
....1.11.5 Uebung
....1.11.6 Snippets
......1.11.6.1 Dateioperationen
......1.11.6.2 Bilder
......1.11.6.3 GUI
......1.11.6.4 Text
......1.11.6.5 PDF
......1.11.6.8 Maus
......1.11.6.10 Zeit
......1.11.6.13 Animation
......1.11.6.15 Simulation
....1.11.7 Referenzen
..1.12 Breakout
2 Beispiel
3 Beispielloesung
4 Praxis
5 javasci
6 Fehlertoleranz1
7 Reglerentwurf
..7.1 Sprungantwort
..7.2 Messdaten
..7.3 Systemidentifikation
..7.4 Polvorgabe
..7.5 Beobachter
..7.6 Robuster_Entwurf
..7.7 SIL
8 Systementwicklung
9 Arduino
..9.1 Lauflicht
..9.2 Taster
..9.3 Sensor
..9.12 Motor_PWM1
..9.13 Motor_PWM2_seriell
..9.14 Motor_PWM3_analogWrite
..9.15 Scheduler
..9.20 AV
..9.21 Mikrofon
..9.22 Universal
....9.22.1 Laborplatine
....9.22.2 LED_Leiste
....9.22.3 Motortreiber
....9.22.4 Sensoreingaenge
....9.22.5 Taster
....9.22.6 Tests
....9.22.7 Mikrofon
....9.22.8 Lautsprecher
....9.22.9 Fahrgestell
..9.23 Zauberkiste
..9.24 OOP
....9.24.1 Uebungen
..9.25 AVneu
....9.25.1 Tests
..9.26 DA_Wandler
..9.27 CompBoard
....9.27.1 Tastenmatrix
....9.27.2 ASCIIDisplay
..9.28 CTC
..9.29 Tonerzeugung
10 EvoFuzzy
..10.1 Fuzzy
....10.1.1 Fuzzylogik
....10.1.2 FuzzyRegler
....10.1.3 Uebung9
....10.1.5 Softwareentwicklung
......10.1.5.1 AgileSoftwareentwicklung
......10.1.5.2 FuzzyRegler
......10.1.5.3 Uebung
....10.1.6 Umsetzung
......10.1.6.1 FuzzyRegler
......10.1.6.2 Simulation
......10.1.6.3 Optimierung
......10.1.6.4 Uebung
....10.1.7 Haengependel
......10.1.7.1 Haengependel
......10.1.7.2 Simulation
......10.1.7.3 FuzzyRegler
......10.1.7.4 Optimierer
......10.1.7.5 Genetisch
....10.1.8 Information
....10.1.9 Energie
..10.2 Optimierung
....10.2.1 Gradientenverfahren
....10.2.2 Heuristiken
....10.2.3 ModifizierteG
....10.2.4 optim
..10.3 Genalgorithmus
..10.4 NeuronaleNetze
....10.4.1 Neuron
....10.4.2 Backpropagation
....10.4.3 Umsetzung
....10.4.4 Winkelerkennung
..10.5 RiccatiRegler
11 Agentensysteme
12 Simulation
20 Massnahmen
21 Kalmanfilter
..21.1 Vorarbeit
..21.2 Minimalversion
..21.3 Beispiel
30 Dreirad
31 Gleiter
..31.1 Fehlertoleranz
80 Vorlesung_2014_10_01
81 Vorlesung_2014_10_08
82 Vorlesung_2014_10_15
83 Vorlesung_2014_10_22
84 Vorlesung_2014_10_29
10.1.7.1 Modellierung des Hängependels
  • Um einen gleichen gemeinsamen Wissensstand zu gewährleisten, wird hier noch einmal die Herleitung des mittels Regler zu beruhigenden Hängependels gebracht:
Schematische Darstellung und Freischnitt des Hängependels.

Bild 10.1.7.1-1: Schematische Darstellung und Freischnitt des Hängependels.

  • S: Schwerpunkt.
  • FG: Gravitationskraft im Schwerpunkt.
  • Fx, Fy: Lagerkraft.
  • FA: horizontale Antriebskraft.
  • Das Pendel ist reibungsfrei gelenkig gelagert.
  • Im Schwerpunkt wirkt nur die Gravitationskraft FG.
  • Das Pendel wird am unteren Ende durch eine nur horizontal wirkende Antriebskraft FA beruhigt.
  • FA ist damit die Stellgröße des später implementierten Reglers.
  • Das Pendel ist ein homogener Stab der Länge 1m, also gilt r=0,5m.
  • Das Pendel sei zylindrisch und habe einen Durchmesser von d=0.05m.
  • Die Pendelmasse m sei 1kg.
  • Das Masseträgheitsmoment bzgl. des Schwerpunktes um eine senkrecht aus der Bildebene stehende Achse berechnet sich somit zu:
Masseträgheitsmoment für das Hängependel bzgl. des Schwerpunktes.

Bild 10.1.7.1-2: Masseträgheitsmoment für das Hängependel bzgl. des Schwerpunktes.

  • Als nächstes werden die Newton-Eulerschen Gleichungen für dieses System bzgl. des Schwerpunktes aufgestellt:
Newton-Euler-Gleichungen zum Hängependel.

Bild 10.1.7.1-3: Newton-Euler-Gleichungen zum Hängependel.

  • Es lassen sich folgende Zwangsbedingungen ableiten:
Zwangsbedingungen.

Bild 10.1.7.1-4: Zwangsbedingungen.

  • Um die Zwangskräfte Fx und Fy eliminieren zu können, werden die Zwangsbedingungen in die Newton-Gleichungen eingesetzt und das Ergebnis davon in die Euler-Gleichung:
Eliminierung der Zwangskräfte und Darstellung der Modellgleichung nur in Abhängigkeit von &phi.

Bild 10.1.7.1-5: Eliminierung der Zwangskräfte und Darstellung der Modellgleichung nur in Abhängigkeit von &phi.

  • Zusammengefasst ergibt sich:
Modellgleichung.

Bild 10.1.7.1-6: Modellgleichung.