kramann.info
© Guido Kramann

Login: Passwort:










Robuste Systemintegration
1 Grundlagen
..1.1 Newton
....1.1.1 LinearSchwinger
....1.1.2 Daempfung
....1.1.4 ODE
....1.1.5 Saaluebung
..1.2 NewtonEuler
....1.2.1 Traegheitsmomente
....1.2.2 Modellgleichungen
....1.2.3 Einfachpendel
..1.3 Scilab
....1.3.1 Erste_Schritte
....1.3.2 Skripte
....1.3.3 Funktionen
..1.4 Laplace
....1.4.1 Eigenwerte
....1.4.2 PT1
..1.5 Regleroptimierung
....1.5.1 Guetefunktion
....1.5.2 Heuristiken
....1.5.3 Scilab
..1.6 Einstellregeln
....1.6.1 Totzeit
....1.6.2 Methode1
....1.6.3 Methode2
....1.6.4 Scilab
..1.7 Zustandsregler
..1.8 Polvorgabe
..1.8 Polvorgabe_alt
..1.9 Beobachter
....1.9.1 Haengependel
..1.10 Daempfungsgrad
..1.11 Processing
....1.11.1 Installation
....1.11.2 Erste_Schritte
....1.11.3 Mechatronik
....1.11.4 Bibliotheken
....1.11.5 Uebung
....1.11.6 Snippets
......1.11.6.1 Dateioperationen
......1.11.6.2 Bilder
......1.11.6.3 GUI
......1.11.6.4 Text
......1.11.6.5 PDF
......1.11.6.8 Maus
......1.11.6.10 Zeit
......1.11.6.13 Animation
......1.11.6.15 Simulation
....1.11.7 Referenzen
..1.12 Breakout
2 Beispiel
3 Beispielloesung
4 Praxis
5 javasci
6 Fehlertoleranz1
7 Reglerentwurf
..7.1 Sprungantwort
..7.2 Messdaten
..7.3 Systemidentifikation
..7.4 Polvorgabe
..7.5 Beobachter
..7.6 Robuster_Entwurf
..7.7 SIL
8 Systementwicklung
9 Arduino
..9.1 Lauflicht
..9.2 Taster
..9.3 Sensor
..9.12 Motor_PWM1
..9.13 Motor_PWM2_seriell
..9.14 Motor_PWM3_analogWrite
..9.15 Scheduler
..9.20 AV
..9.21 Mikrofon
..9.22 Universal
....9.22.1 Laborplatine
....9.22.2 LED_Leiste
....9.22.3 Motortreiber
....9.22.4 Sensoreingaenge
....9.22.5 Taster
....9.22.6 Tests
....9.22.7 Mikrofon
....9.22.8 Lautsprecher
....9.22.9 Fahrgestell
..9.23 Zauberkiste
..9.24 OOP
....9.24.1 Uebungen
..9.25 AVneu
....9.25.1 Tests
..9.26 DA_Wandler
..9.27 CompBoard
....9.27.1 Tastenmatrix
....9.27.2 ASCIIDisplay
..9.28 CTC
..9.29 Tonerzeugung
10 EvoFuzzy
..10.1 Fuzzy
....10.1.1 Fuzzylogik
....10.1.2 FuzzyRegler
....10.1.3 Uebung9
....10.1.5 Softwareentwicklung
......10.1.5.1 AgileSoftwareentwicklung
......10.1.5.2 FuzzyRegler
......10.1.5.3 Uebung
....10.1.6 Umsetzung
......10.1.6.1 FuzzyRegler
......10.1.6.2 Simulation
......10.1.6.3 Optimierung
......10.1.6.4 Uebung
....10.1.7 Haengependel
......10.1.7.1 Haengependel
......10.1.7.2 Simulation
......10.1.7.3 FuzzyRegler
......10.1.7.4 Optimierer
......10.1.7.5 Genetisch
....10.1.8 Information
....10.1.9 Energie
..10.2 Optimierung
....10.2.1 Gradientenverfahren
....10.2.2 Heuristiken
....10.2.3 ModifizierteG
....10.2.4 optim
..10.3 Genalgorithmus
..10.4 NeuronaleNetze
....10.4.1 Neuron
....10.4.2 Backpropagation
....10.4.3 Umsetzung
....10.4.4 Winkelerkennung
..10.5 RiccatiRegler
11 Agentensysteme
12 Simulation
20 Massnahmen
21 Kalmanfilter
..21.1 Vorarbeit
..21.2 Minimalversion
..21.3 Beispiel
30 Dreirad
31 Gleiter
..31.1 Fehlertoleranz
80 Vorlesung_2014_10_01
81 Vorlesung_2014_10_08
82 Vorlesung_2014_10_15
83 Vorlesung_2014_10_22
84 Vorlesung_2014_10_29

12 Implementierung eines genetischen Optimierers für die Lenkregelung eines simulierten AVs

12 (EN google-translate)

12 (PL google-translate)

Das nachfolgende BlueJ-Java-Projekt bildet die Grundlage der nachfolgenden Aufgaben und wird im Unterricht durchgesprochen:

simulation10.zip - Simuliertes AV mit Abstands-Sensor.

Saalübung

  • Der Simulation wird ein P-Regler ergänzt.
  • Der Simulation wird ein Framework für einen Optimierer hinzugefügt.
Übung
  • Implementieren Sie einen Optimierer nach dem Prinzip des modifizierten Gradientenverfahrens.
  • Implementieren Sie einen Optimierer nach dem Prinzip des genetischen Algorithmus'.