kramann.info
© Guido Kramann

Login: Passwort:










Robuste Systemintegration
1 Grundlagen
..1.1 Newton
....1.1.1 LinearSchwinger
....1.1.2 Daempfung
....1.1.4 ODE
....1.1.5 Saaluebung
..1.2 NewtonEuler
....1.2.1 Traegheitsmomente
....1.2.2 Modellgleichungen
....1.2.3 Einfachpendel
..1.3 Scilab
....1.3.1 Erste_Schritte
....1.3.2 Skripte
....1.3.3 Funktionen
..1.4 Laplace
....1.4.1 Eigenwerte
....1.4.2 PT1
..1.5 Regleroptimierung
....1.5.1 Guetefunktion
....1.5.2 Heuristiken
....1.5.3 Scilab
..1.6 Einstellregeln
....1.6.1 Totzeit
....1.6.2 Methode1
....1.6.3 Methode2
....1.6.4 Scilab
..1.7 Zustandsregler
..1.8 Polvorgabe
..1.8 Polvorgabe_alt
..1.9 Beobachter
....1.9.1 Haengependel
..1.10 Daempfungsgrad
..1.11 Processing
....1.11.1 Installation
....1.11.2 Erste_Schritte
....1.11.3 Mechatronik
....1.11.4 Bibliotheken
....1.11.5 Uebung
....1.11.6 Snippets
......1.11.6.1 Dateioperationen
......1.11.6.2 Bilder
......1.11.6.3 GUI
......1.11.6.4 Text
......1.11.6.5 PDF
......1.11.6.8 Maus
......1.11.6.10 Zeit
......1.11.6.13 Animation
......1.11.6.15 Simulation
....1.11.7 Referenzen
..1.12 Breakout
2 Beispiel
3 Beispielloesung
4 Praxis
5 javasci
6 Fehlertoleranz1
7 Reglerentwurf
..7.1 Sprungantwort
..7.2 Messdaten
..7.3 Systemidentifikation
..7.4 Polvorgabe
..7.5 Beobachter
..7.6 Robuster_Entwurf
..7.7 SIL
8 Systementwicklung
9 Arduino
..9.1 Lauflicht
..9.2 Taster
..9.3 Sensor
..9.12 Motor_PWM1
..9.13 Motor_PWM2_seriell
..9.14 Motor_PWM3_analogWrite
..9.15 Scheduler
..9.20 AV
..9.21 Mikrofon
..9.22 Universal
....9.22.1 Laborplatine
....9.22.2 LED_Leiste
....9.22.3 Motortreiber
....9.22.4 Sensoreingaenge
....9.22.5 Taster
....9.22.6 Tests
....9.22.7 Mikrofon
....9.22.8 Lautsprecher
....9.22.9 Fahrgestell
..9.23 Zauberkiste
..9.24 OOP
....9.24.1 Uebungen
..9.25 AVneu
....9.25.1 Tests
..9.26 DA_Wandler
..9.27 CompBoard
....9.27.1 Tastenmatrix
....9.27.2 ASCIIDisplay
..9.28 CTC
..9.29 Tonerzeugung
10 EvoFuzzy
..10.1 Fuzzy
....10.1.1 Fuzzylogik
....10.1.2 FuzzyRegler
....10.1.3 Uebung9
....10.1.5 Softwareentwicklung
......10.1.5.1 AgileSoftwareentwicklung
......10.1.5.2 FuzzyRegler
......10.1.5.3 Uebung
....10.1.6 Umsetzung
......10.1.6.1 FuzzyRegler
......10.1.6.2 Simulation
......10.1.6.3 Optimierung
......10.1.6.4 Uebung
....10.1.7 Haengependel
......10.1.7.1 Haengependel
......10.1.7.2 Simulation
......10.1.7.3 FuzzyRegler
......10.1.7.4 Optimierer
......10.1.7.5 Genetisch
....10.1.8 Information
....10.1.9 Energie
..10.2 Optimierung
....10.2.1 Gradientenverfahren
....10.2.2 Heuristiken
....10.2.3 ModifizierteG
....10.2.4 optim
..10.3 Genalgorithmus
..10.4 NeuronaleNetze
....10.4.1 Neuron
....10.4.2 Backpropagation
....10.4.3 Umsetzung
....10.4.4 Winkelerkennung
..10.5 RiccatiRegler
11 Agentensysteme
12 Simulation
20 Massnahmen
21 Kalmanfilter
..21.1 Vorarbeit
..21.2 Minimalversion
..21.3 Beispiel
30 Dreirad
31 Gleiter
..31.1 Fehlertoleranz
80 Vorlesung_2014_10_01
81 Vorlesung_2014_10_08
82 Vorlesung_2014_10_15
83 Vorlesung_2014_10_22
84 Vorlesung_2014_10_29
kramann.info
© Guido Kramann

Login: Passwort:




Optimierung

  • Die zuvor eingeführte Methode der Kleinsten Quadrate diente dazu, Modellparameter passend zu bestimmen.
  • Ein anderes Problem ist es, Modellparameter so einzustellen, dass das Modellverhalten unter einem bestimmten Aspekt optimal wird.
  • Ein Beispiel hierfür wären die Parameter des zuvor beahndelten Tilgers, wobei optimal wäre, wenn die Schwingerenergie möglichst rasch aus dem System herausgezogen wird.
  • Ein weiteres ganz typisches Beispiel ist die Optimierung der Parameter eines Reglers.
  • Die folgenden Kapitel bereiten auf das Thema der Optimierung vor.
  • Es werden nach und nach Strategien beschrieben, auf deren Grundlage solche Optimierungen automatisiert durchgeführt werden können.
  • Aber anstatt von vorne herein numerische Modelle, die integriert werden müssen zu optimieren, wird als Einführung für eine einfache algebraische zweidimensionale Funktion z=f(x,y) nach einem extremalen Wertepaar (x,y) gesucht.
  • Man sollte dabei aber unbedingt im Auge behalten, dass z das Modellverhalten repräsentiert und x und y als Parameter, z.B. eines Reglers, angesehen werden sollten.