
An Overtone Based Algorithm Unifying
Counterpoint and Harmonics

Guido Kramann1

Fachhochschule Brandenburg
kramann@fh-brandenburg.de

Abstract. In this paper an algorithm is introduced which allows to
estimate a chord’s degree of consonance as well as its possibilities of
progression regardless of the number of tones it consists of and regardless
of the underlying pitch space (e.g. tempered or microtonal).
This claim could be achieved by introducing an overtone based point of
view to single tones of the examined chords and – more detailed – by
not only taking into account which overtone a single tone could have but
also of which other tone it could be an overtone itself. In addition the
well known tolerant and logarithmic character of human perception of
tone pitch was taken into account.

Keywords: computational musicology, music production and composi-
tion tools, linear counterpoint, pitch spaces, algorithmic composition

1 Introduction

In musicology there is an ongoing discussion about physical foundation of har-
monics [5]. One of the most substantial arguments against a physical foundation
based on overtones is that overtones do not explain why a minor third sounds
consonant to a human. In any case overtones represent a link between matter
and humans as they are tonal representants of the matters’ eigenvalues. So they
are the best candidates for a physical foundation of music we know and due to
this fact often meet with theoretical works about sound, music perception and
music production, e.g. [6], [8], [3]. Although the focus of interest of this article
does not lie in this discussion, for the here presented overtone based algorithm
which will be introduced in chapter 4 it is of high relevance. Particularly it should
be mentioned at the beginning that overtones are used in the algorithm not as
part of a tone but as potential supplements to a pitch. In addition this algorithm
also takes into account the well known tolerant and logarithmic (Weber-Fechner
law) character of human perception of tone pitch.1 This means that physical are

1 A difference of about three cent is given to unisono voices to achieve a more vivid
sound e.g. in accordions. So two pitches with up to three cent difference will be
accepted by humans as the ”same” tone. Steps in octaves are recognized as linear
progression. Direct evidence for the tolerant and logarithmic character of human
acoustic perception is given by the tempered pitch space: Equidistant tone steps in
this system correspond with equal factors in their representation as frequencies.

2 Guido Kramann

considered as well as physiological aspects. By doing this it is possible to obtain
e.g. quantitative results for the degree of consonance of intervals which agree
with classical music theory comprising minor thirds as will be seen in chapter 5
(Adjustment and verification of tonalCoincidence Algorithm). What is more the
same algorithm can also be used to estimate possibilities of chord progression
by making use of an idea from a nearly forgotten work ”Linearer Kontrapunkt”
by Ernst Kurth [4]. Finally the here mentioned implicit algorithmic formula-
tion for horizontal and vertical composition rules can lead to more unifying and
compact formulations of composing algorithms and gives a better chance to ex-
pand its application area than explicit formulated rules do. This can be seen as
an alternative approach to systems of rule based music computation which are
highly bound to the context respective music genre they where developed for –
especially if they are very complex, e.g. [2] [1]. A showcase for an algorithmic
composition program using the here introduced algorithm is given in chapter
6 (Doing Algorithmic Composition using the tonalCoincidence Algorithm). But
before all this it is nescessary to introduce some basic definitions, transformation
formulas and scales on which the algorithm is based on in the following chapters
2 and 3:

2 Basic Formulas

Using a MIDI pitch would comply with the demand of beeing logarithmic regard-
ing to a representation using frequencies. This is well introduced but the smallest
entity here is about one half tone and this is indeed very rough. Also well in-
troduced is it to divide one half tone in 100 steps where one step is called cent.
Here instead of defining a pitch by its MIDI number and an additional amount
of cents both is drawn together in a scale further called ”midicent” [mc]. The
way how transformations between frequencies f [Hz], MIDI pitches mp [midi]
and midicent pitches mcp [mc] can be done can be seen in the formulas 1 to 6.
Following these definitions a MIDI pitch of 69midi corresponds to a frequency
of 440Hz and the midicent pitch of the same tone is 6900mc, see also table 2.

midi2frequency(mp) =
440

2
69
12

2
mp
12 (1)

frequency2midi(f) = 12 log2(f
2

69
12

440
) (2)

midicent2frequency(mcp) =
440

2
69
12

2
mcp
1200 (3)

frequency2midicent(f) = 1200 log2(f
2

69
12

440
) (4)

midi2midicent(mp) = 100mp (5)

Unifying Counterpoint and Harmonics 3

midicent2midi(mcp) =
mcp

100
(6)

frequency [Hz] midi pitch [midi] midicent pitch [mc]
440 69 6900
660 76 7602
880 81 8100

Table 2: Examples for transformations.

3 Basic Definitions: Overtones and Undertones

Overtones are whole-number multiples of the frequency of a base tone and are
well known.

In the context of this work an undertone of a pitch A means a pitch B which
could have pitch A as overtone. B is a (virtual) base tone of A.

If there is a tone with the frequency f and a positive integer number m, then
the frequency of its m-th overtone is:

fom = (m + 1)f (7)

For the same tone its m-th undertone is:

fum =
f

m + 1
(8)

In the midicent representation over- and undertones can be found symmetri-
cally to both sides of the tone they are calculated for and transpositions of this
tone result in a linear shift of its over- and undertones. Table 3 and Figure 1
illustrate this by showing three different tones with five over- and undertones
in their midicent representation. The corresponding frequencies of these tones
are 440Hz (first tone), 660Hz (second tone) and 880Hz (third tone). Listing 3
represents a function to evaluate an array with a midicent pitch in the middle
of the array and N undertones on the left and N overtones on the right side and
is called dockingPoints.

Listing 3: Function ”dockingPoints” - Evaluate an array with a midicent pitch
in the middle and N under- and overtones

dock[] = dockingPoints(mcp,N)

f=midicent2frequency(mcp)

for i=0:N-1

dock[i]=frequency2midicent(f/(N+1-i))

end

dock[N]=mcp

for i=0:N-1

dock[i+N+1]=frequency2midicent(f*(i+2))

end

return dock[]

end.

4 Guido Kramann

Fig. 1. Over- and undertones in midicent representation.

u5 u4 u3 u2 u1 tone o1 o2 o3 o4 o5
3798 4114 4500 4998 5700 6900 8100 8802 9300 9686 10002
4500 4816 5202 5700 6402 7602 8802 9504 10002 10388 10704
4998 5314 5700 6198 6900 8100 9300 10002 10500 10886 11202
Table 3: Over- and undertones in midicent representation.

4 Tonal Coincidence Algorithm

The basic concept of this paper to analyse intervals and later also chords is rep-
resented in an algorithm called tonalCoincidence and is presented in Listing 4-2.
For this algorithm overtones and undertones play the role of ”virtual docking
points” which a tone A exposes to a tone B and vice versa. As variables tonal-
Coincidence needs the midicent pitches of a tone A and its reference tone B.
As parameters tonalCoincidence needs the number of over- and undertones N to
take into account and the range two docking points may differ from each other
to still coincide. Whenever the function tonalCoincidence is called, it counts the
number of docking points of tone A which coincede with those of its reference
tone B. The function dockingPoints (Listing 3) is called from within tonalCoin-
cidence and produces the necessary docking points for a tone B which is called
a reference pitch here (mcpref - mdicent pitch reference). A tone A should also
coincide to another tone B when it is transposed in octave steps. The function
dockingPointsMult (Listing 4-1) generates and combines docking points for a
tone A and several of its octave transpositions. Last is done upwards and down-
wards in enough steps that any possible coincidence is taken into account. The
function combine whithin dockingPointsMult combines two arrays and sorts the
resulting array. It also takes care that each value in the resulting array only
appears once.

Unifying Counterpoint and Harmonics 5

Listing 4-1: Function ”dockingPointsMult” - Evaluate more docking points by
doing transpositions in octave steps

dockmult[] = dockingPointsMult(mcp,sref[])

N=(size(sref[])-1)/2

dockmult[] = dockingPoints(mcp,N)

mcpOct=mcp+1200

while frequency2Midicent(midicent2Frequency(mcpOct)/N)<=max(sref[]) do

dockmult[] = combine(dockmult[] , dockingPoints(mcpOct,N))

mcpOct=mcpOct+1200

end

mcpOct=mcp-1200

while frequency2Midicent(midicent2Frequency(mcpOct)*N)>=min(sref[]) do

dockmult[] = combine(dockmult[] , dockingPoints(mcpOct,N))

mcpOct=mcpOct-1200

end

return dockmult[]

end.

Listing 4-2: Algorithm ”tonalCoincidence” - Coincidence of a midicent pitch
with a reference pitch

count = tonalCoincidence(mcp,mcpref,TOLERANCE=24,N=5)

count=0

sref[]=dockingPoints(mcpref,N)

s=dockingPointsMult(mcp,sref[])

foreach s[] as v

foreach sref[] as vref

if v+TOLERANCE>=vref AND v-TOLERANCE<=vref THEN count=count+1

end

end

return count

end.

5 Adjustment and Verification of Tonal Coincidence
Algorithm

As can be seen in the tonalCoincidence algorithm (Listing 4-2), the first param-
eter TOLERANCE is set to 24 and the second one N is set to 5 by default.
There is no physical or physiological reason for this at the moment, but it is
parametrized like this to achieve suitable results when compared to a subset of
states from classical music theory.

A verification for the algorithm is done inasmuch as it is shown that there
will not appear inconsistences for this parameter set.

6 Guido Kramann

First Test: Intervals. As first test consonant and dissonant intervals are built
and opposed to their tonal coincidence value. For symmetry reasons – it is not
determinable which pitch is reference – tonalCoincidence is called twice where
pitch and reference are interchanged in the second call and both results are added
then. This variant will be called tonalSymmetricCoincidence. Its implementation
can be seen in Listing 5-1. The test can be done e.g. with C’ (60midi) as base tone
or with any other tone without changes in the results. The results of this test
can be seen in Table 5: Consonant intervals have values smaller and dissonant
ones have values bigger than five in the tonalSymmetricCoincidence column.
Octaves have the highest tonalSymmetricCoincidence value. Minor thirds ob-
tained a much smaller value than major thirds but are still distinguishable from
dissonant intervals.

Listing 5-1: Degree of consonance for intervals

count = tonalSymmetricCoincidence(mcpA,mcpB,TOLERANCE=24,N=5)

return tonalCoincidence(mcpA,mcpB,TOLERANCE,N) ...

... + tonalCoincidence(mcpB,mcpA,TOLERANCE,N)

end.

Interval name Half tone steps tonalSymmetricCoincidence
Perfect unison 0 22
Minor second 1 4
Major second 2 4

Minor third 3 6
Major third 4 12

Perfect fourth 5 14
Tritone 6 0

Perfect fith 7 14
Minor sixth 8 12
Major sixth 9 6

Minor seventh 10 4
Major seventh 11 4

Perfect unison + 1 Perfect octave 12 22
Minor second + 1 Perfect octave 13 4
Major second + 1 Perfect octave 14 4

Minor third + 1 Perfect octave 15 6
Major third + 1 Perfect octave 16 12

Perfect fourth + 1 Perfect octave 17 14
Tritone + 1 Perfect octave 18 0

Perfect fith + 1 Perfect octave 19 14
Minor sixth + 1 Perfect octave 20 12
Major sixth + 1 Perfect octave 21 6

Minor seventh + 1 Perfect octave 22 4
Major seventh + 1 Perfect octave 23 4

Perfect unison + 2 Perfect octaves 24 22
Table 5: Tests with intervals.

Unifying Counterpoint and Harmonics 7

Second Test: Microtones. A fifth does not sound as nice as it should sound
on a piano because here the frequency ratio is not exactly 3:2==1.5 but is
2(7/12)==1.498... The second interval can be represented as interval C-G with
6000mc and 6700mc. The nearest integer representation of the first interval would
be 6000mc and 6702mc. Both values obtained by calling tonalSymmetricCoin-
cidence with these intervals remain at 14. This estimation is too rough but at
least it does not produce inconsistent results. To distinguish between interval
one and interval two or in any other case where microtonal differences play a
role the parameter TOLERANCE could be decreased until one of both results
differs from the other. At a TOLERANCE smaller or equal to 1 the perfect
fith ”wins” (interval one) and remains at 14 whereas the imperfect one (interval
two) drops down to 0. Listing 5-2 shows an implementation (tonalSymmetric-
CoincidenceMicro) which quantifies also microtonal intervals. It is assumed here
that it does not make any sense to set the parameter TOLERANCE to a value
higher than 99.

Listing 5-2: Degree of consonance for microtone intervals

count = tonalSymmetricCoincidenceMicro(mcpA,mcpB,TOLERANCE=24,N=5)

c = tonalSymmetricCoincidence(mcpA,mcpB,TOLERANCE,N)

micro = 0

TOLERANCE = TOLERANCE - 1

while TOLERANCE>=0 AND c==tonalSymmetricCoincidence(mcpA,mcpB,TOLERANCE,N)

micro = micro + 1

TOLERANCE = TOLERANCE - 1

end

return c*100 + micro

end.

Third Test: Consonance of Chords. Now the evaluation of a degree of con-
sonance will be expanded to handle also chords consisting of two, three, four
and more tones. To achieve compatibility between chords of different numbers
of tones the following is done: Each tone of the examined chord is taken and
its pairwise coincidence value to the remaining tones of the same chord is calcu-
lated. From the obtained values the minimum is taken. The degree of consonance
of a chord then is defined as the average of these minimums (Listing 5-3). To
achieve a wide applicability also for microtones tonalSymmetricCoincidenceMi-
cro is called for the pairwise calculations within chordConsonance. Some results
can be seen in Table 5. The relative results for chords with the same number of
tones is consistent, but in one case a dissonant chord (C-F-G) obtains a degree
of consonance in a range which is obtained for a consonant chord/interval with
a lower numbers of tones (C-Es). This is obviously not nice, but it is not easy
to decide if it is wrong at this moment as it is not determinable to which extent
a fuller sound – more tones in a chord – compensates dissonances.

Listing 5-3: Degree of consonance for chords

8 Guido Kramann

count = chordConsonance(chord[],TOLERANCE=24,N=5)

c = 0

m = size(chord[])

for i=0:m-1

minimum=tonalSymmetricCoincidenceMicro(chord[i],chord[i],TOLERANCE,N)

for k=0:m-1

test = tonalSymmetricCoincidenceMicro(chord[i],chord[k],TOLERANCE,N)

if i!=k AND test<=minimum

minimum = test

end

end

c = c + minimum

end

return c/m

end.

chord [mc] cons. / diss. name chordConsonance
6000 6700 consonant C-G (Fifth) 1422
6000 6702 consonant C-G (Natural fifth 1424
6000 6400 consonant C-E (Major third) 1210
6000 6300 consonant C-Es (Minor third) 608

6000 6400 6700 consonant C-E-G (C-Major) 808
5500 6000 6400 consonant G-C-E (C5-Major) 808
5200 5500 6000 consonant E-G-C (C3-Major) 808
6000 6300 6700 consonant C-Es-G (C-Minor) 808
6000 6500 6700 dissonant C-F-G (C45) 754
6000 6500 6700 consonant C-F-A (F5-Major) 808

6000 6400 6700 7000 dissonant C-E-G-Hb (C7) 269
6000 6400 6700 7200 consonant C-E-G-C (C-Major) 909
6000 6400 6702 7200 consonant C-Major with natural fifth 910

Table 5: Tests with chords.

Fourth Test: Chords Progression. Finally the idea to calculate also possibil-
ities of chord progression with another variant of the here introduced algorithms
gives the key to use the tonal coincidence algorithm also for algorithmic compo-
sition.

As mentioned before the idea is based on the work ”Linearer Kontrapunkt”
by Ernst Kurth [4]. Kurth describes there the phenomenon that in a major chord
the major third has a tendency to a movement up to fourth and interpretes it
as a kind of horizontal dissonance.

In other words: Following the reasoning of Kurth the tone E in C E G does not
sound dissonant in a static way but it has a certain proportion of restlessness
in the context with C and G which could be neutralized by a specific chord
progression.

It will be shown now that this portion of restlessness can be quantified for any
tone of a chord using a method also based on the tonal coincidence algorithm.

Unifying Counterpoint and Harmonics 9

By using the here introduced technique of counting coinciding docking points
a measurement can be obtained which gives information about how good one
tone of a chord fits together with the others in the same chord. To find out this
e.g. for E in the context of C and G the docking points of C and G are com-
bined and their coincidence with those of E is calculated. An algorithm named
tonePersistence to evaluate this can be found in Listing 5-4 and a ”microtone
variant” in Listing 5-5.

By doing this for each tone of a chord and also for a subsequent chord (e.g.
C-E-G to C-F-A – tonica to subdominante) information can be obtained which
can be used as an alternative for classical counterpoint rules.

To understand this it is necessary first to interpret each step of the successive
chords as a tone of an individual voice. In the example C-E-G to C-F-A the
voice in the middle moves from E to F. As can be seen in Table 5 E has the
lowest persistence in C-E-G – it is the third of this chord – and F has the
highest persistence in C-F-A – it is the root of this chord. In addition in the
same table can be seen that the root has allways the highest and the third the
lowest persistence in a chord. In a diminished chord all tones have a relative low
persistence and in a chord consisting of octaves all tones have a relative high
persistence.

Listing 5-4: Degree of persistence of a tone in a Chord

count = tonePersistence(index, chord[],TOLERANCE=24,N=5)

count = 0

m = size(chord[])

q = 0

testtone = chord[index]

for i=0:m-1

if i!=index

if q==0

dockref[] = dockingPoints(chord[i],N)

else

dockref[] = combine(dock , dockingPoints(chord[i],N))

end

q=q+1

end

end

dock = dockingPointsMult(testtone,dockref[])

foreach dock[] as v

foreach dockref[] as vref

if v+TOLERANCE>=vref AND v-TOLERANCE<=vref THEN count=count+1

end

end

return count

end.

Listing 5-5: Degree of persistence of a microtone in a chord

10 Guido Kramann

count = tonePersistenceMicro(index, chord[],TOLERANCE=24,N=5)

count = tonePersistence(index, chord[],TOLERANCE,N)

micro = 0

TOLERANCE = TOLERANCE - 1

while TOLERANCE>=0 AND count==tonePersistence(index, chord[],TOLERANCE,N)

micro = micro + 1

TOLERANCE = TOLERANCE - 1

end

return count*100 + micro

end.

chord [mc] testtone description tonePersistenceMicro
6000 6400 6700 6000 Persistence of C in E-G 1510
6000 6400 6700 6400 Persistence of E in C-G 1108
6000 6400 6700 6700 Persistence of G in C-E 1408
6000 6500 6900 6000 Persistence of C in F-A 1408
6000 6500 6900 6500 Persistence of F in C-A 1510
6000 6500 6900 6900 Persistence of A in C-F 1108
5900 6200 6500 5900 Persistence of H in D-F 907
5900 6200 6500 6200 Persistence of D in H-F 1008
5900 6200 6500 6500 Persistence of F in H-D 907
4800 6000 7200 4800 Persistence of c in c’-c” 1924
4800 6000 7200 6000 Persistence of c’ in c-c” 1624
4800 6000 7200 7200 Persistence of c” in c-c’ 1624

Table 5: Persistence

6 Doing Algorithmic Composition by Counting
Coincidences of Over- and Undertones

The algorithms tonePersistenceMicro and chordConsonance can be used to for-
mulate integral criteria to evaluate the quality of a piece of music. To demon-
strate this as a simple showcase an algorithmic composition program will be
described to generate a canon with four voices which uses tonePersistenceMicro
and chordConsonance.2

The canon to be generated will be cyclic and the melody it is based on is
shifted vertically as well as horizontally for the involved voices. ”Cyclic” means
that the chord the canon ends with has to fit to the one at the beginning. The
horizontal shifts for voice 1, 2, 3, 4 are determined to 24, 0, 12, 36 time periods
and the vertical ones are 700,0,-500,-1200 (in midicent). One time period is the
smallest entity in the music piece and is identical to the shortest tone – here one
eighth note. The algorithm starts with a random melody which will be optimized.

2 As a canon has a very strict musical architecture which is ruled mainly by harmonic
laws there is not needed too much more than the harmonic rules for the realization
of the composition program. This is why this musical form was selected.

Unifying Counterpoint and Harmonics 11

To be able to do that the melody is copied to a matrix with one row for each
voice while taking into account the horizontal and vertical shifts. So the matrix
represents the chord progression when all voices have started – because of the
cyclic character of the canon overlapping parts of a voice at the end are copied
to the beginning. Only this matrix is needed for the harmonical optimization.
The optimization criteria are brought in a hierarchical order. The first one is
the sum of all values for chordConsonance which is applied to each chord in
the matrix. The second optimization criterion summates the absolute values of
all changes of tone persistence (calculated with tonePersistenceMicro). The idea
behind this is to make the piece as vivid as possible by having a high amount of
interchanges in tone persistence. Hence the function is called restlessness), see
Listing 6-1.

Listing 6-1: Interchanges in tone persistence in a piece of music

count = restlessness(matrix[][])

count=0

foreach chord c in matrix and its successor d

count = count + abs(tonePersistenceMicro(0,c)-tonePersistenceMicro(0,d))

count = count + abs(tonePersistenceMicro(1,c)-tonePersistenceMicro(1,d))

count = count + abs(tonePersistenceMicro(2,c)-tonePersistenceMicro(2,d))

count = count + abs(tonePersistenceMicro(3,c)-tonePersistenceMicro(3,d))

end

return count

end.

Two subordinate optimization criteria evaluate for the canon melody some-
thing which could be called ”self-similarity” of pitches and intervals to obtain a
catchy structure for it. Representative for all the canons which could be gener-
ated with this program the melody of one of them can be seen in Figure 2.

For a further examination a java source code representing the here described
canon composition program as well as a soundfile and the score and its parts of
the canon above can be obtained on this website: http://www.kramann.info/
unifying As proof for the quality of the algorithms used in the canon compo-
sition one optimization process was analyzed: On the intermediate data of the
optimization process two classical counterpoint rules were applied to find out if
the number of classical counterpoint errors has a correlation to the actual com-
puted quality of the canon. As first classical rule the ban of consecutive fiths was
taken. As second classical criterion it was determined how often dissonances were
not reached and left stepwise. As crossings of voices are allowd in canons the
tones of two successive chords had to be sorted first before doing this analysis.

As can be seen in Figure 3 for the examined optimization process the num-
ber of consecutive fiths increases while the number of unallowed jumps into
dissonances decreases. So it is possible to get influence on these criteria but the
actual version of the composition algorithm tends to a kind of ”archaic” and
respectively ”rock music”.

12 Guido Kramann

Fig. 2. voice of an algorithmic generated canon.

0 200100 30050 150 250 350

0

200

400

600

100

300

500

700

Successful optimization steps

E
rr

o
rs

Consecutive fifth ___ Jump into dissonances

Fig. 3. Harmonics errors.

Unifying Counterpoint and Harmonics 13

7 Concluding Remarks and Further Work

In this paper a new implicite algorithmic formulation for horizontal and vertical
composition rules was presented and its verification was done as well as its
applicability was shown. As this work focuses on algorithmic composition it
was important to find a system which is able to deal with any sound structure.
Actually a verification was only done by comparisons to a small selection of rules
taken from classical music theory. Works like [7] – here harmonic and inharmonic
sounds were fed to ear models – could give a better proof for formulas and
algorithms which evaluate e.g. a degree of consonance for chords. Unfortunatly
in [7] only pitches with additional overtones were examined as representants
of harmonic sounds. On the other hand doing algorithmic composition requires
to objectify the compositional process and its rules in a much higher degree
than a reliable but patchy music theory can offer, which is oriented more on
analytical than on generative demands. So the specific aim of this work can also
be seen in giving an approach to a generic base for the classical compositional
rules to enable e.g. more compact optimization criteria in accordant composition
algorithms.

As interactive application for the presented algorithms it is planned to use
them in masks made of concrete which contain embedded systems with audio
sensors (Figure 4). They will be mounted on the campus of the Brandenburg
University of Applied Sciences and will respond to sound and whistling of pedes-
trians nearby and to each other with accompanying music and sounds composed
in realtime.

Fig. 4. Sounding masks project.

14 Guido Kramann

References

1. Acevedo, A.G.: Fugue Composition with Counterpoint Melody Generation Using
Genetic Algorithms. In: Wiil, U.K. (ed.) Computer Music Modeling and Retrieval.
LNCS, vol. 3310, pp. 96–106. Springer, Heidelberg (2004)

2. Dixon, S., Mauch, M., Anglade, A.: Probabilistic and Logic-Based Modelling of
Harmony. In: Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K. (eds.)
Exploring Music Content. LNCS, vol. 6684, pp. 1–19. Springer, Heidelberg (2011)

3. Horner, A.: Evolution in Digital Audio Technology. In: Miranda, E.R., Biles, J.A.
(eds.) Evolutionary Computer Music, pp. 52–73. Springer, London (2007)

4. Kurth, E.: Grundlagen des Linearen Kontrapunkts - Bachs melodische Poly-
phonie: Die unterdominantische Entwicklungstendenz der Dur-Tonalitt, pp. 77–80.
Krompholz, Bern (1916)

5. Ploeger, R.: Studien zur systematischen Musiktheorie: Zum Problem Monismus -
Dualismus, pp. 69–107. Eutin, Nordstedt (2002)

6. Saranti, A., Eckel, G., Pirro, D.: Quantum Harmonic Oscillator Sonification. In:
Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K. (eds.) Auditory Display.
LNCS, vol. 5954, pp. 184–201. Springer, Heidelberg (2009)

7. Schneider, A., Frieler, K.: Perception of Harmonic and Inharmonic Sounds: Results
from Ear Models. In: Ystad, S., Kronland-Martinet, R., Jensen, K. (eds.) Computer
Music Modeling and Retrieval. LNCS, vol. 5493, pp. 18–44. Springer, Heidelberg
(2008)

8. Sciabica, J-F., Bezat, M-C., Roussaire, V., Kronland-Martinet, R., Ystad, S.: To-
wards Timbre Modeling of Sounds Inside Accelerating Cars. In: Ystad, S., Aramaki,
M., Kronland-Martinet, R., Jensen, K. (eds.) Auditory Display. LNCS, vol. 5954,
pp. 377–391. Springer, Heidelberg (2009)

